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Abstract

Reinforcement learning agents operating in real
environments may be asked to solve many tasks
over their operational lifetimes. While attempting
to perform one task, such an agent often collects
experience relevant to many others, but such data
is typically off-policy and therefore challenging
to exploit; nevertheless, it should be exploited.
Therefore, we first formalize the problem setting
as a shared environment with multiple tasks and
reward streams. Then, we provide a taxonomy
of replay strategies in this setting and propose
a novel approach to shared environment multi-
task replay, where off-policy task completions are
balanced with on-policy task assignments during
replay relabeling. We compare our method’s per-
formance to alternative task relabeling strategies
in a modified Crafter domain, where tasks are as-
signed in a random sequence until the agent dies
or all the tasks are completed. Rewards and ter-
mination conditions are provided for each task
simultaneously, although the agent is only evalu-
ated on the sequence of assignments. Our results
show that our novel replay strategy can exploit
multiple streams of sparse reward without neglect-
ing assigned tasks when combined with the deep
model-based RL algorithm DreamerV2.

1. Introduction

Reinforcement learning agents operating in real environ-
ments may be asked to solve many tasks over their opera-
tional lifetimes. While attempting to complete one of these
assigned tasks, an agent may encounter data relevant to
tasks other than the one currently assigned. If available, an
agent may find it useful to have access to the counterfactual
answer to the question, “If I was currently assigned task A
(although I am solving task B), how would I be doing?”.
As a motivating example, consider an agent in a kitchen,
who has been tasked to make a series of dishes, including
baking a cake, finding a mug, and brewing coffee. While ex-
ploring the kitchen to bake a cake, the agent may encounter
and manipulate a variety of items, such as a coffee mug.

If the next task is to find the mug, then the experience of
previously finding the coffee mug collected during the task
“bake a cake” is of course highly relevant, despite the cur-
rent assignment being essentially unrelated. By relabeling
the experience with the other task, and changing the re-
wards, an agent can learn to exploit such chance encounters
systematically.

Goal relabeling is one such method which might seem ap-
propriate for such a situation (Andrychowicz et al., 2017).
However, not all kitchen configurations result in a finished
dish, and so goal relabeling would require an additional
transformation of the task space, and may not be able to
exploit the original task structure in the organic manner as
above. In this paper, we propose a new method which can
exploit task structure in the multi-task learning setting.

Most reinforcement learning algorithms were not designed
to handle multiple, simultaneous reward streams. For exam-
ple, many popular model-free deep reinforcement learning
techniques, such as PPO (Schulman et al., 2017) or soft-
actor critic (Haarnoja et al., 2018), may struggle to make
efficient use of multiple reward streams, due to the off-policy
nature of the alternative rewards. Others, like DQN (Mnih
et al., 2013), are capable in principle of off-policy learn-
ing but may still have difficulty in practice (Van Hasselt
et al., 2018). One early paper in this direction (Silver et al.,
2017), learns a latent predictive model from multiple reward
streams, although it stops short of addressing the full control
aspect of the reinforcement learning problem. On the other
hand, many components of model-based (Atkeson & San-
tamaria, 1997; Moerland et al., 2020) deep reinforcement
learning algorithms, such as MuZero (Schrittwieser et al.,
2020), or DreamerV?2 (Hafner et al., 2020), translate well
out of the box to multi-task learning, as learning a latent
transition function and observation function need little to
no modification with the introduction of multiple rewards.
However, many of these model-based algorithms utilize
model-free algorithms to learn a policy in an inner loop,
and were likely not designed with multi-task environments
particularly in mind.

Finally, there is the complex question of when or how best
to relabel. In this work, we explore the performance of
several different relabeling strategies, paired with the model-



based deep reinforcement learning algorithm DreamerV2,
and propose our solution: MT-Dreamer. We provide a com-
prehensive framework for generating and comparing replay
strategies that focuses on the temporal relationship that a
single piece of experience has with a variety of tasks. Each
replay strategy considered makes different decisions based
on those relationships. To thoroughly evaluate these strate-
gies, we compare MT-Dreamer with these strategies on a
novel multi-task version of Crafter. (Hafner, 2021). Empiri-
cally, we find that a strategy that balances both the on-policy
nature of assigned task experience, while replaying success-
ful task completions regardless of assignment is the most
effective.

2. Preliminaries
2.1. Reinforcement Learning with Multiple Tasks

We consider a shared environment, multi-task reinforcement
learning setting, in which an agent interacts with a single
environment to achieve various tasks. An environment is
described by a set of states S, a set of actions .4, an initial
state distribution p, transition probabilities p(s¢+1 | S, at),
and a discount factor v € [0, 1].

In the multi-task setting, there is a task space T correspond-
ing to the space of possible goals. Each task 7 € T maps to
some reward function R, : S x A — R, and a termination
function d,; : S x A — [0,1]. If a task 7 is terminal at
time mn and the last reward 7 (8, ., ) is positive, we call
that task completed, and if the last reward is negative, we
call it not completed. This can be easily generalized to an
arbitrary binary classifier, but we omit it for clarity. At each
timestep ¢, the agent receives as input the current state s;
and the current task 7, such that 7 : S x 7 — A. After
executing an action, the agent receives the task-specific re-
ward r; = 7,(S¢, a;). If the current task terminates, then the
next task is sampled from any task in 7 that is not already
terminated. If there are no more tasks to sample, than the
episode terminates.

Reinforcement learning algorithms fall into two categories:
model-free and model-based. Model-free algorithms es-
timate the value function and/or policy through directly
interacting with the environment. In contrast, model-based
methods approximate the environment dynamics, such as
the transition and reward, with a model to assist in this
learning process. After the agent repeatedly interacts with
the environment, the experienced transitions are stored in
a dataset D = {(s¢, at, rt, St+1, 72 - The agent then uses
these experiences to estimate a model M. We discuss the
specific model-based learning algorithm used as the back-
bone of our work below.

2.2. DreamerV2

DreamerV2 (Hafner et al., 2020), an algorithm in the
Dreamer family (Hafner et al., 2019a; 2023), was the first
MBRL method to achieve human-level performance on
Atari (Bellemare et al., 2013; Machado et al., 2018). It
learns behaviors from the compact latent space of a learned
world model, which is trained independently from the policy.
DreamerV?2 consists of an experience dataset D for training
the world model, a world model M for imagining sequences
of compact model states, and an actor 7 and critic Q™ for
behavior learning.

The world model M consists of multiple model compo-
nents: an image encoder, a recurrent state-space model
(RSSM) (Hafner et al., 2019b) for dynamics learning, and a
set of predictors to reconstruct the image, reward, and dis-
count factor. The RSSM consists of three parts: a recurrent
model that produces the deterministic recurrent state h;, a
representation model that produces a stochastic latent poste-
rior state z; by explicitly incorporating information about
the current image z;, and a transition predictor that pro-
duces the prior state Z;, which aims to predict the posterior
without access to the current image.

2.3. Experience Replay

Experience replay is a standard technique in deep reinforce-
ment learning to improve sample efficiency and stability
of training (Lin, 1992; Fedus et al., 2020). It consists of a
fixed-size replay buffer that typically holds a large number
of the most recent transitions collected by the policy. During
training, the algorithm extracts samples from the buffer to
perform updates. Because data can be resampled multiple
times, this technique offers the benefit of sample efficiency.
The randomized sampling also increases stability, as con-
secutive gradient updates become more decorrelated than if
they were applied to the data in a strictly temporal order.

The introduction of a deep, generative world model (Ha &
Schmidhuber, 2018) allows for the generation of “imagined”
data which can augment or in some cases completely replace
directly sampled data from the environment. Other more
modern model-based RL papers, like the Dreamer family
and MuZero, continue to build on model-free techniques
for training policies, using an experience replay buffer to
initially sample data for replay, then rolling the latent model
out some fixed number of timesteps before computing a loss.
Training these more competitive methods on off-policy data
is still a concern, and may require modifications.

Hindsight Experience Replay (HER) (Andrychowicz et al.,
2017) introduces a number of potential strategies for goal re-
labeling, although it assumes that every state fulfills at least
one goal, unlike our multi-task setting. Prioritized experi-
ence replay (Schaul et al., 2015) provides a framework for



more frequently replaying important transitions. When ap-
plied to DQN, this approach generally outperformed DQN
with standard uniform replay. Curriculum guided HER
(Fang et al., 2019) is an approach for enabling agents to learn
from failed experiences in a goal-based, sparse-reward set-
ting that employs a curriculum of assigned goals. likelihood
free importance weights (Sinha et al., 2022b), experience re-
play optimization (Zha et al., 2019), competitive experience
replay (Liu et al., 2019), continuous transition (Lin et al.,
2021), surprisingly simple self-supervised reinforcement
learning (S4RL) (Sinha et al., 2022a), neighborhood mixup
experience replay (Sander et al., 2022), are all additional
techniques which extend and build upon the foundational
ideas of experience replay.

3. Improving Multi-Task Replay

We present MT-Dreamer, an extension of the Dreamer fam-
ily of algorithms to the multi-task setting. We first specify
the changes needed to adopt Dreamer to this setting, then
delve into the additional considerations implicated in per-
forming experience replay in the context of multiple reward
streams. To that end, we present a taxonomy for thinking
about and organizing multi-task experience replay strategies.
We then instantiate a subset of potential replay strategies
and explain them in detail.

3.1. MT-Dreamer

Like DreamerV2, MT-Dreamer consists of the standard
components for a model-based agent: a world model that
is learned from data, an actor and a critic that are trained
using the model-generated sequences of latent states, and an
experience dataset that is collected by the actor to continue
training the model. However, we introduce a few critical
changes to utilize Dreamer in the multi-task setting. We
detail these changes here.

Model Replay Buffer. Previous versions of Dreamer have
no notion of an assigned task. In all experiments, we rep-
resent the assigned task as a one-hot encoding. However,
our framework can easily accommodate other task repre-
sentations. Although an agent is assigned an initial task
7 € T at the start of an episode, upon completion, another
task will be assigned. Because the temporal assignment of
tasks factors heavily in the differences between candidate
replay strategies, we must store the assigned task at each
timestep 7.7 in our model replay buffer. We store these
assigned tasks in addition to the standard components that
are stored in the world model replay buffer (images, actions,
rewards, task completions, and discount factors). Task re-
wards 7 € RI7! and completions d € {0,1}/7! are stored
as vectors. These changes allows us to explore a variety of

replay strategies, as we can distinguish between replaying
the assigned task and alternative tasks, and carefully con-
sider the temporal order of events as an episode plays out.
We define the function used for the replay strategy as f.

Model Components. To handle the multi-task setting, we
introduce an additional task predictor that takes as input a
one-hot vector corresponding to the assigned task 7, and
aims to produce a reconstruction of the task 7;. This task
predictor is implemented as an MLP. We believe that task
conditioning will be useful for representation learning; as a
result, we additionally augment the representation model in
DreamerV2. In DreamerV2, the representation model serves
to output a distribution over the posterior state z;. This pos-
terior state z; is given access to the current image x;; the
prior state Z; is not. We augment the representation model to
additionally take as input the assigned task 7, such that the
representation model becomes: z; ~ ¢y (2¢|hy, x4, 7). The
prior state Z; aims to predict the posterior without access
to the current image or the task vector. We therefore keep
the transition predictor, which outputs the prior state, un-
changed from DreamerV2. This choice enables us to learn
behaviors by predicting sequences of model states with the
RSSM without needing to observe or generate images or
task vectors.

Model Learning. We jointly optimize all components of
the world model. Given that we are in a multi-task set-
ting, we must now introduce the concept of a task in the
loss function. The chosen sampling strategy f determines
the task 7 that is used for replay at each timestep ¢t. The
loss of all predictors, including our proposed task predic-
tor, are the log-likelihoods of their corresponding targets.
We also include the KL-balancing loss 3 KL [-] for train-
ing the prior toward the representations and regularizing
the representations toward the prior. However, we include
one key change: the representation model (or approximate
posterior) now takes as input the task vector 7; in addition
to the current image z; and deterministic recurrent state h;,
giving us ¢4 (2¢|he, ¢, 7). The MT-Dreamer loss function
is therefore:

T
£(¢) = Eq(ﬁ(zl:Tlal:Tyl'l:T»Tl.'[‘) [Z —In p¢(xt|ht7 Zt)

t=1
—In P¢(Tt|ht, z) —In p¢(7t|ht»zt)
—In py(7¢|hy,y 2¢)

+ B KL [q¢(2t|ht, 21, 7¢)| [P (26|t )]]-

3.2. Replay with Task Assignment

The adoption of the multi-task framework means there are
additional possibilities for experience replay during train-
ing. We now present a taxonomy for thinking about and
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Figure 1. A sample timeline for a sample episode. T denotes tasks; A, B, C, and D are time points corresponding to four intervals
determined by task completion and task assignments. The arrows on the upper part of the timeline show when the tasks are assigned,

whereas the bottom part shows when the tasks are completed.

organizing replay strategies in this setting. In a multi-task
sequential decision-making problem, where multiple tasks
are assigned and completed during an episode, for any given
timestep ¢, tasks 7 can be categorized into three categories
with respect to their assignment time (past, future, and never)
and also into three categories similarly with respect to their
completion time. To illustrate these possible categorizations,
we provide an example in Figure 1. There are five possi-
ble tasks (71, 79, T3, T4, and 75) in the environment. We
highlight four points in time during the environment rollout,
t = A, B,C, D, where A occurs before B, B occurs before
C, and C occurs before D.

At the start of the episode ¢ = 0, a task 73 is assigned to the
agent according to some task assignment distribution p-.
For the time point ¢ = A, therefore, 7 is assigned in the past
(past assigned). Given that 7y is completed aftert = B, itis
also completed in the future with respect to ¢ = A, making
it also future completed. This assignment is also reflected
with respect to time point ¢ = B. However, note that the
agent completes 71 between time points B and C'. This task
completion means that, with respect to time point C, 7 has
now been completed in the past (past completed). This
change is also reflected in its categorization with respect to
time point D.

Now consider 75. During the course of the entire episode,
the agent is never assigned 7o, so it is always categorized as
never assigned for all time points in the episode. However,
the agent accomplishes this task after ¢ = A. Therefore, 7o
is categorized as future completed with respect to ¢t = A.
For all other time points, it is categorized as past completed.

We now contrast 73 and 74. With respect to timepoint A, 73
and 74 are assigned in the future, making them both future

assigned. However, the agent completes 73 after timepoint
C but before timepoint D, so it is considered future com-
pleted with respect to time points A, B, and C. In contrast,
the agent never accomplishes 74, so it is categorized as
never completed with respect to all considered time points.

Finally, consider 75. It is never assigned over the course of
the episode, and the agent never accomplishes it. Therefore,
it is categorized as never assigned and never completed
for all considered time points.

3.3. Replay Strategies

Our task taxonomy implies a variety of replay strategies. In
particular, different combinations act as filters for data to
consider as replay. For example, when we perform experi-
ence replay, we can choose to only consider tasks that were
assigned and completed over the course of that episode. In
this case, we do not consider other tasks that were assigned
but not completed or tasks that were completed but not
assigned. More generally, under our proposed taxonomy,
there are nine possible task categorizations: for assignment
and completion, we choose from past, future, and never.
However, including data from tasks that have been com-
pleted in the past for any assignment category would break
the causality component of the sequential learning problem.
For that reason, we focus on the six remaining categoriza-
tions, which we show in Table 1.

We note that these filters can be combined to include po-
tentially even more data for replay. For example, we may
want to include data for tasks that have been assigned in
the past and not completed, as well as tasks that have been
assigned in the past and completed. Considering data in this



Strategies

Task Variations

Never a. Futurea. Nevera. Futurea. Pasta. Past a.
Never c. Neverc. Futurec. Futurec. Neverc. Futurec.
No relabel X X X X v v
Future completed X X v 4 X v
Completed or past assigned X X 4 v v v
All assigned X v X v v v
All assigned or completed X 4 v v v v
All tasks v v v v v v

Table 1. Strategy variations

way yields 64 possible ways to include data for replay. Each
way corresponds to a different replay strategy. Because
accomplishing an assigned task is the primary goal of task-
conditioned RL, we always include this data in learning,
which decreases the candidate strategies to 32. To reduce
them even further, we categorize task variations based on
whether they are positive experiences or negative experi-
ences or whether they are on-policy or off-policy. Then, we
select the strategies that are distinctive for these categories
to see their contribution to the performance, such as all posi-
tive, all on-policy, on-policy and positive, etc. Consequently,
we choose six to thoroughly empirically evaluate. We now
describe each of the six included strategies in turn.

No Relabel (NR). This strategy includes experiences with
the assigned task labels where tasks can be succeeded in the
future or never succeeded. There is no relabeling done for
unassigned tasks. Therefore, this is the closest strategy to
the standard training of the RL methods in this environment
because it only retains on-policy data.

Future Completed (FC). This strategy considers only the
tasks that are completed in the future where they can be
assigned anytime or not assigned at all. Past successes are
not included because that would again break the causality.
The models are trained with sequences relabeled with tasks
whose solution they lead to as if these tasks are assigned. In
case there are multiple solved tasks, one of them is randomly
sampled. Therefore, this strategy focuses only on positive
experiences.

Completed or Past Assigned (CPA). This strategy ex-
tends the FC strategy with one difference: it also includes
tasks that were assigned in the past and never completed.
By including this data, we selectively test the contribution
of on-policy negative experiences.

All Assigned (AA). The all assigned (AA) strategy in-
cludes all tasks that have been assigned at any point, regard-
less of whether they have been completed. In comparison
with no relabel strategy, this strategy relabels experiences
with future assigned tasks and considers that these off-policy

Figure 2. A sample picture from test environment Crafter. The
agent (blue shirt, center of the screen) has successfully made a
wood pickaxe and sword using the crafting table.

experiences are related even if those tasks are not currently
assigned.

All Assigned and Completed (AC). This strategy extends
the completed or past assigned strategy with the second-
order related negative experiences, where a task is assigned
in the future but never completed. Like AA, this also consid-
ers that off-policy experiences are related to future assigned
tasks.

All Tasks This strategy includes the remaining experi-
ences where tasks are never assigned and never completed.
In the end, it includes all task variations.

4. Experiments

Equipped with our MT-Dreamer model, we now investi-
gate which of the experience replay strategies yields the
best performance on a modified version of Crafter (Hafner,
2021).

4.1. Experimental Setup

Multi-Task Crafter Crafter (Hafner, 2021) is a rela-
tively new benchmark for key challenges in reinforcement
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Figure 3. 1M training run for the best strategy.

learning, including generalization, exploration, representa-
tion learning, long-term reasoning, and credit assignment.
Crafter is inspired by Minecraft, a challenge that is of great
interest to the research community (Aluru et al., 2015; John-
son et al., 2016; Guss et al., 2019). Like Minecraft, Crafter
includes an item hierarchy that an agent traverses by walk-
ing around, collecting objects, and crafting. At the same
time, the agent must stay alive by warding off enemies, find-
ing shelter, and eating. There are 22 skills in total, ranging
from simply waking up from sleep, all the way to mining di-
amond. Figure 2 shows a sample picture of the environment,
where the agent was able to collect wood and made wood
pickaxe and sword using the crafting table. Although Crafter
has an implicit notion of skills through the reward signal
— the first time each of the 22 possible skills is achieved
in an episode provides the agent with some reward — the
agent has no explicit notion of task. To adopt Crafter to the
multi-task setting, we introduce Multi-Task Crafter. This
environment is the same as Crafter, except we restructure
the reward function to evaluate the episode for all 22 tasks
separately. This change enables the evaluation of various
task relabeling strategies. To further emphasize the focus
on sample efficiency, we propose an additional, more data-
constrained setting: we reduce the original sample budget
of 1 million timesteps to 200,000 to evaluate all strategies.
Then, we train the best 2 strategies with 1 million timesteps
to distinguish them clearly in longer time horizons.

4.2. Results

We now present our main findings. We find that overall, task
relabeling is more helpful than not for most of the strategies.
Including the positive reward trajectories has a greater im-
pact than off-policy negative reward trajectories, although
the on-policy negative reward trajectories are still important.
We use two different metrics to assess performance. The
first metric computes the score over all completed tasks in
that episode (Overall Score). The second metric only as-

Crafter scores after 200k timesteps

Crafter score

Figure 4. Overall performances of the strategies. We compute the
performance as the geometric mean over all tasks, which enables
rarer tasks to have a higher influence on the score. Error bars
represent the standard deviation across 3 trials. The completed or
past assigned strategy exhibits a higher task performance than the
other strategies.

sesses which of the assigned tasks have been successfully
completed (Assigned Score). In both cases, we present the
Crafter score in order to assess an agent’s capabilities on
all tasks. This score assesses whether an agent completes a
task at least once during an episode, then takes a geometric
mean over the task completions. We further decompose
the score into task-specific completion, which we detail
in Appendix A.

Figure 3 illustrates the typical evolution of task accuracies
for a given run of multi-task Crafter. Shown is a run for
one million timesteps for the strategy completed or past
assigned. The performance drop at beginning of the graph
indicates the start of the training, where the agent switches
from the random policy that filled the replay buffer initially.
The tasks that are instantly available with possible actions
are easily learned, such as waking up or collecting a plant.
Then, it learns to do more complex tasks at the bottom of
the hierarchy that requires moving to the correct position,
like collecting water and wood. Later, it starts to pick up
hierarchically more complex tasks like making a wooden
pickaxe and collecting stones. For clarity, tasks that were
not successfully completed at least once are omitted.

In Figure 4, we see the various strategies sorted by their
Crafter score achieved after 200k timesteps. The completed
and past assigned strategy has the highest mean Crafter
Score at 4.2, followed by all assigned and completed at
3.76. future completed has the third place at 2.68, and no
relabel is at 2.16. Finally, all assigned is last, with a score
of only 1.9.

From the Crafter scores, we can see an overall improvement
from the use of relabeling. Figure 5 shows the success rate



success rate (in log scale)

Various replay strategies at 200k timesteps

mmm future completed

mmm all tasks
mmm completed or past assigned

Table 2. Crafter scores for the two best replay strategies after IM
timesteps. As the agents are rewarded on the basis of the assigned
tasks, they are more likely to complete a task during an episode it
is assigned. Changes to the task-conditioning could likely improve

this gap, although it was not the primary aim of this paper.

for each task/strategy pair independently. Looking at the
figure, we see that although the overall gap between com-
pleted or past assigned and all assigned or completed is not
outside of a standard deviation, we see that for 15 out of
22 tasks, completed or past assigned is outperforming all
assigned or completed. We also see that future completed
is nearly matching completed or past assigned and all as-
signed or completed in the easier tasks, like wake up, collect
sapling, or place plant, but is far behind in the rarer tasks,

like place furnace, collect coal, or even place table.

We selected the two best strategies and trained for an addi
tional 1 million timesteps, in order to better compare the
strategies. We present the results of this experiment in Ta
ble 2. In this regime, completed or past assigned maintained
its small but superior performance over all assigned or com-
pleted for both Assigned Score and Overall Score. We find
that both replay strategies achieve higher Assigned Scores

than Overall Scores.

mmm no relabel
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AC CPA 4.3. Discussion
gsmglllledCC;afteé Score ggi g;g Our results show that the performance of the model de-
verall Crafter score : : pends on several data factors such as: the data amount,
positive-negative experience, and off-policy. The two worst

strategies are all assigned and no relabel because the only
positive experience they get is completion of a past assigned
task. This data is very sparse, especially at the early stages
of training. All assigned does worse than no relabel because
off-policy data (future assigned) hurt the training. How-
ever, this effect is not large because the agent must complete
an assigned task in order to get a future assignment, and
this case is rare (as explained before). Although all future
completed does not utilize any negative experiences like
(past/future assigned never completed), task relabeling of
the off-policy positive experiences (never assigned future
completed) improves the performance because these experi-
ences happen a lot since the agent often solves unassigned
easy tasks. Completed or past assigned adds only the on-
policy negative experiences (past assigned never completed),
but this improves the performance greatly and makes it the
best strategy. All assigned and completed does slightly
worse than completed or past assigned in both 200K and
1M runs because the off-policy negative experiences (future
assigned and never completed) apparently hurt training.
all tasks performs worse than all future completed because
we add too much off-policy negative experiences with never
assigned and never completed since this data type dominates
the dataset. To sum up, the positive experiences greatly help
training and justify the use of task relabeling whether they
are on or off-policy. Negative experiences are helpful when
the data is on-policy, but can substantially hurt the model if



they are off-policy, and dominate the dataset.

5. Conclusion

We studied replay strategies for multi-task reinforcement
learning in the model-based setting. We first formalized the
problem setting as a shared environment of multi-tasks with
multiple reward streams and employed a leading model-
based RL algorithm to test candidate replay strategies. We
provided a comprehensive framework to distinguish replay
strategies based on the temporal aspect of task assignment
and completion. Our experiments show that the strategy
that balances positive experience with on-policy negative
experience performs best.
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A. Additional Experimental Results



Achievements No Relabel All Assigned CPA  Future Completed All Assigned or Completed ~ All Tasks

collect coal 0.0003 0.0003 0.0043 0.0000 0.0020 0.0006
collect diamond 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
collect drink 0.2319 0.2341 0.5145 0.4780 0.5042 0.2310
collect iron 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
collect sapling 0.6031 0.5549 0.8741 0.8674 0.8300 0.6336
collect stone 0.0011 0.0006 0.0143 0.0014 0.0123 0.0033
collect wood 0.4228 0.3438 0.7182 0.4615 0.6586 0.4340
defeat skeleton 0.0005 0.0006 0.0032 0.0028 0.0036 0.0019
defeat zombie 0.0064 0.0095 0.0436 0.0378 0.0185 0.0089
eat cow 0.0169 0.0081 0.0681 0.0402 0.0454 0.0150
eat plant 0.0000 0.0000 0.0003 0.0003 0.0000 0.0000
make iron pickaxe 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
make iron sword 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
make stone pickaxe 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000
make stone sword 0.0000 0.0000 0.0000 0.0000 0.0003 0.0000
make wood pickaxe 0.0166 0.0095 0.0970 0.0089 0.0851 0.0272
make wood sword 0.0160 0.0053 0.1311 0.0120 0.1037 0.0250
place furnace 0.0000 0.0000 0.0009 0.0000 0.0008 0.0000
place plant 0.5300 0.4730 0.8313 0.8445 0.8059 0.5405
place stone 0.0003 0.0003 0.0057 0.0003 0.0053 0.0014
place table 0.1263 0.0810 0.4660 0.1270 0.3986 0.1546
wake up 0.7871 0.7174 0.9158 0.9066 0.9179 0.7988

Table 3. Success rates on the augmented Multi-Task Crafter.
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Figure 6. Full task results of the two best strategies in a one million training run. Error bars represent the standard deviation across 3 trials.
The completed or past assigned strategy exhibits a higher task performance than all assigned or completed.



